Effects of Langmuir Kinetics on Two-lane Totally Asymmetric Exclusion Processes of Molecular Motor Traffic
نویسندگان
چکیده
In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP) coupled with random attachment and detachment of particles (Langmuir kinetics) in both lanes under open boundary conditions. Our model can describe the directed motion of molecular motors, attachment and detachment of motors, and free inter-lane transition of motors between filaments. In this paper, we focus on some finite-size effects of the system because normally the sizes of most real systems are finite and small (e.g., size ≤ 10, 000). A special finite-size effect of the two-lane system has been observed, which is that the density wall moves left first and then move towards the right with the increase of the lane-changing rate. We called it the jumping effect. We find that increasing attachment and detachment rates will weaken the jumping effect. We also confirmed that when the size of the two-lane system is large enough, the jumping effect disappears, and the two-lane system has a similar density profile to a single-lane TASEP coupled with Langmuir kinetics. Increasing lane-changing rates has little effect on density profiles after the density reaches maximum. Also, lane-changing rate has no effect on density profiles
منابع مشابه
Effects of Langmuir Kinetics of Two-Lane Totally Asymmetric Exclusion Processes in Protein Traffic
In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP) coupled with random attachment and detachment of particles (Langmuir kinetics) in both lanes under open boundary conditions. Our model can describe the directed motion of molecular motors, attachment and detachment of motors, and free inter-lane transition of motors between filaments. In this paper, we focus ...
متن کاملIdentifying and Analyzing Stop and Go Traffic based on Asymmetric Theory of Driving Behavior in Acceleration and Deceleration
Stop and go traffic that leads to oscillate traffic flow frequently is observed on congestion flow. Unexpected reasons such as lane – changing maneuvers, lower speeds of leader vehicle and moving bottleneck cause stop and go traffic and amplifying delay and environment impacts. Stop and go traffic exactly can’t be modeled by traffic models, and also car following models based on kinematic flow ...
متن کاملPhase-plane analysis of the totally asymmetric simple exclusion process with binding kinetics and switching between antiparallel lanes.
Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using ...
متن کاملTwo-lane totally asymmetric exclusion processes with particle creation and annihilation
This paper studies two-lane totally asymmetric simple exclusion processes (TASEP) coupled with particle creation and annihilation in one of the two lanes (lane 2). The dependence of the density profiles of both lanes on the lane-change rate O is investigated. It is shown that with the increase of O, a complex behavior on both lanes occurs. Synchronization of the shocks in both lanes occurs when...
متن کاملSynchronization of kinks in the two-lane totally asymmetric simple exclusion process with open boundary conditions
We study the motion of kinks in a two-lane model of the totally asymmetric simple exclusion process with open boundaries. Once a lane change is allowed, the positions of the kinks become synchronized. We analytically study the motion of the kinks by a decoupled approximation. When we choose the lane change rate asymmetric, the difference between the positions of the kinks become zero, though th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007